3 resultados para Dynamic programming

em Duke University


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Segmentation of anatomical and pathological structures in ophthalmic images is crucial for the diagnosis and study of ocular diseases. However, manual segmentation is often a time-consuming and subjective process. This paper presents an automatic approach for segmenting retinal layers in Spectral Domain Optical Coherence Tomography images using graph theory and dynamic programming. Results show that this method accurately segments eight retinal layer boundaries in normal adult eyes more closely to an expert grader as compared to a second expert grader.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With the popularization of GPS-enabled devices such as mobile phones, location data are becoming available at an unprecedented scale. The locations may be collected from many different sources such as vehicles moving around a city, user check-ins in social networks, and geo-tagged micro-blogging photos or messages. Besides the longitude and latitude, each location record may also have a timestamp and additional information such as the name of the location. Time-ordered sequences of these locations form trajectories, which together contain useful high-level information about people's movement patterns.

The first part of this thesis focuses on a few geometric problems motivated by the matching and clustering of trajectories. We first give a new algorithm for computing a matching between a pair of curves under existing models such as dynamic time warping (DTW). The algorithm is more efficient than standard dynamic programming algorithms both theoretically and practically. We then propose a new matching model for trajectories that avoids the drawbacks of existing models. For trajectory clustering, we present an algorithm that computes clusters of subtrajectories, which correspond to common movement patterns. We also consider trajectories of check-ins, and propose a statistical generative model, which identifies check-in clusters as well as the transition patterns between the clusters.

The second part of the thesis considers the problem of covering shortest paths in a road network, motivated by an EV charging station placement problem. More specifically, a subset of vertices in the road network are selected to place charging stations so that every shortest path contains enough charging stations and can be traveled by an EV without draining the battery. We first introduce a general technique for the geometric set cover problem. This technique leads to near-linear-time approximation algorithms, which are the state-of-the-art algorithms for this problem in either running time or approximation ratio. We then use this technique to develop a near-linear-time algorithm for this

shortest-path cover problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe a general technique for determining upper bounds on maximal values (or lower bounds on minimal costs) in stochastic dynamic programs. In this approach, we relax the nonanticipativity constraints that require decisions to depend only on the information available at the time a decision is made and impose a "penalty" that punishes violations of nonanticipativity. In applications, the hope is that this relaxed version of the problem will be simpler to solve than the original dynamic program. The upper bounds provided by this dual approach complement lower bounds on values that may be found by simulating with heuristic policies. We describe the theory underlying this dual approach and establish weak duality, strong duality, and complementary slackness results that are analogous to the duality results of linear programming. We also study properties of good penalties. Finally, we demonstrate the use of this dual approach in an adaptive inventory control problem with an unknown and changing demand distribution and in valuing options with stochastic volatilities and interest rates. These are complex problems of significant practical interest that are quite difficult to solve to optimality. In these examples, our dual approach requires relatively little additional computation and leads to tight bounds on the optimal values. © 2010 INFORMS.